LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Relationship between indoor and outdoor size-fractionated particulate matter in urban microenvironments: Levels, chemical composition and sources.

Photo from wikipedia

Exposure to particulate matter (PM) has been associated with adverse health outcomes, particularly in susceptible population groups such as children. This study aims to characterise children's exposure to PM and… Click to show full abstract

Exposure to particulate matter (PM) has been associated with adverse health outcomes, particularly in susceptible population groups such as children. This study aims to characterise children's exposure to PM and its chemical constituents. Size-segregated aerosol samples (PM0.25, PM0.25-0.5, PM0.5-1.0, PM1.0-2.5 and PM2.5-10) were collected in the indoor and outdoor of homes and schools located in Lisbon (Portugal). Organic and elemental carbon (OC and EC) were determined by a thermo-optical method, whereas major and trace elements were analysed by X-Ray Fluorescence. In school, the children were exposed to higher PM concentrations than in home, which might be associated not only to the elevated human occupancy but also to outdoor infiltration. The pattern of PM mass size distribution was dependent on the location (home vs. school and indoor vs. outdoor). The presence of EC in PM0.25 and OC in PM0.25-0.5 was linked to traffic exhaust emissions. OC and EC in PM2.5-10 may be explained by their adhesion to the surface of coarser particles. Generally, the concentrations of mineral and marine elements increased with increasing PM size, while for anthropogenic elements happened the opposite. In schools, the concentrations of mineral matter, anthropogenic elements and marine aerosol were higher than in homes. High mineral matter concentrations found in schools were related to the close proximity to busy roads and elevated human occupancy. Overall, the results suggest that exposure to PM is relevant and highlights the need for strategies that provide healthier indoor environments, principally in schools.

Keywords: pm0 pm0; matter; size; particulate matter; relationship indoor; indoor outdoor

Journal Title: Environmental research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.