LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bioinspired design of underwater superoleophobic Poly(N-isopropylacrylamide)/ polyacrylonitrile/TiO2 nanofibrous membranes for highly efficient oil/water separation and photocatalysis.

Photo by abukarsky from unsplash

Inspired by fish scales, this study prepares a thermo-responsive underwater oleophobic PNIPAM/PAN/TiO2 nanofibrous membranes by traditional electrospinning technique using poly-N-isopropylacrylamide (PNIPAM) and polyacrylonitrile (PAN). Thermal properties, mechanical properties, surface chemical… Click to show full abstract

Inspired by fish scales, this study prepares a thermo-responsive underwater oleophobic PNIPAM/PAN/TiO2 nanofibrous membranes by traditional electrospinning technique using poly-N-isopropylacrylamide (PNIPAM) and polyacrylonitrile (PAN). Thermal properties, mechanical properties, surface chemical composition, wettability, photocatalysis, and oil/water separation of PNIPAM/PAN/TiO2 membrane are explored compared to pure PNIPAM membrane. Result reveals that PAN/TiO2 compounds make PNIPAM membrane with a smaller fiber diameter of 141 nm and high tensile stress of 7.4 MPa, and also decompose 98% of rhodamine B after UV light radiation. This bioinspired design structure endows the membrane with superhydrophilicity with a low water contact angle, and underwater superoleophobicity with a high oil contact angle of 157° (petroleum ether) and 151° (dichloromethane). This membrane can efficiency separate oil/water mixture with a high separation efficiency. Moreover, the resultant PNIPAM/PAN/TiO2 membrane has the bionic fish scale structure, and has wettability respond at lower critical solution temperature making the water flux decreased from 10013 ± 367 L m-2·h-1 to 7713 ± 324 L m-2·h-1, and thus has a potential to be used in purification of reclaimed water and separation of oil from water.

Keywords: oil water; water separation; water; pnipam; oil

Journal Title: Environmental research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.