LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pigment epithelium-derived factor (PEDF) ameliorates arsenic-induced vascular endothelial dysfunction in rats and toxicity in endothelial EA.hy926 cells.

Photo from wikipedia

Although the harmful effects of arsenic exposure on the cardiovascular system have received great attention, there is still no effective treatment. Vascular endothelial dysfunction (VED) is the initial step of… Click to show full abstract

Although the harmful effects of arsenic exposure on the cardiovascular system have received great attention, there is still no effective treatment. Vascular endothelial dysfunction (VED) is the initial step of cardiovascular diseases, where pigment epithelium-derived factor (PEDF) plays an important role in maintaining endothelial function. Here, we explored the protective role of PEDF in VED induced by arsenic, and its underlying molecular mechanism, designing an in vivo rat model of arsenic exposure recovery and in vitro endothelial EA. hy926 cell-based assays. The edema of aortic endothelial cells in rats significantly improved during recovery from arsenite exposure compared with rats exposed to 10 and 50 mg/L arsenite continuously. In addition, serum levels of nitric oxide (NO), von Willebrand factor, and nitric oxide synthase (inducible and total activities) in rats, which were greatly affected by arsenite exposure, returned to levels similar to those in the control group after recovery with distilled water. The recovery from arsenite exposure was associated with increased levels of PEDF; decreased protein levels of Fas, FasL, P53, and phospho-p38; and inhibited apoptosis in aortic endothelial cells in vivo. Recombinant human PEDF treatment (100 nM) prevented the toxic effects of arsenite (50 μM) on endothelial cells in vitro by increasing NO content, decreasing reactive oxygen species (ROS) levels, and inhibiting apoptosis, as well as increasing cell viability and decreasing levels of P53 and phospho-p38. Our findings suggest that PEDF protects endothelial cells from arsenic-induced VED by increasing NO release and inhibiting apoptosis, where P53 and p38MAPK are its main targets.

Keywords: vascular endothelial; exposure; pedf; pigment epithelium; factor; endothelial dysfunction

Journal Title: Environmental research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.