LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An appropriate technique for treating rural wastewater by a flow step feed system driven by wind-solar hybrid power.

Photo from wikipedia

Most rural wastewater treatment facilities require aeration equipment to ensure sufficient dissolved oxygen (DO) during processing. Operation and maintenance are costly, and cannot be met in many areas with poor… Click to show full abstract

Most rural wastewater treatment facilities require aeration equipment to ensure sufficient dissolved oxygen (DO) during processing. Operation and maintenance are costly, and cannot be met in many areas with poor economic levels. This has led to further deterioration of the rural water environment and aroused much attention. This work reports a plug-flow step feed system utilizing wind and solar hybrid energy for rural wastewater treatment. Under certain climatic conditions, the wind energy and solar energy provided complimentary power generation, and an automatic control system (without batteries) was constructed. The corresponding control logic for multi-energy level operation was developed. Furthermore, the power generation efficiency of the system, the pollutant removal, and its mechanism on the bioreactor were also analyzed. According to the monitoring of meteorological conditions, wind and solar resources at the test site were abundant, and the electricity generated by the power generation was sufficient to meet the operational needs of the equipment. Energy efficiency can reach 80.0%. The characteristics of pollutant removal in each process section were studied on spatial and temporal dimensions. Results showed that the wastewater treatment process reached mean removal efficiencies of chemical oxygen demand (CODcr), NH4+-N, total nitrogen (TN) and total phosphorus (TP) were 90.2%, 94.3%, 61.4% and 63.1%, respectively. Analyses of microbial community richness and group changes in each anoxic/aerobic reaction chamber in the biofilm reactor showed that the population structure was relatively stable and that there were abundant functional bacteria capable of degrading pollutants in each aerobic and anoxic unit. This system can thus be a more sustainable treatment process than traditional techniques used for rural wastewater treatment, providing a new design approach for low-energy consumption and unattended rural wastewater treatment.

Keywords: system; energy; treatment; rural wastewater; power; wastewater

Journal Title: Environmental research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.