LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of electrostatic field and conductive material on the direct interspecies electron transfer for methane production.

Photo from wikipedia

The influence of electrostatic field on the direct interspecies electron transfer (DIET) pathways for methane production was investigated in a batch bioelectrochemical anaerobic digester (BEAD). The ultimate methane production and… Click to show full abstract

The influence of electrostatic field on the direct interspecies electron transfer (DIET) pathways for methane production was investigated in a batch bioelectrochemical anaerobic digester (BEAD). The ultimate methane production and methane yield in the BEAD reactor saturated to 925 ± 29 mL/L and 309.9 ± 9.6 mL CH4/g COD, respectively, which were much higher than 616 ± 3 mL/L and 205.4 ± 205.4 mL CH4/g COD in the anaerobic digester (AD). In the cyclic voltammogram (CV) for bulk solution, the oxidation peak current was 0.52 mA in the BEAD reactor, which was higher than 0.24 mA of AD reactor. This shows that the oxidizing ability of microorganisms was greatly improved in the BEAD reactor. Anaerolineaceae, a well-known electroactive bacterial family, was well enriched in the BEAD reactor. It indicates that the electrostatic field can enrich the electroactive bacteria and activate the DIET pathways for methane production. Moreover, the conductive material (activated carbon) further improved the performance of BEAD reactor, implies that the conductivities of bulk solution is one of the important parameters for the DIET pathways.

Keywords: methane production; methane; bead; reactor; electrostatic field

Journal Title: Environmental research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.