LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrication of Ag3PO4/TiO2@molecular sieve (MS) ternary composites with remarkably enhanced visible light-responded photocatalytic activity and mechanism insight.

Photo from wikipedia

In this study, Ag3PO4/TiO2@molecular sieve (MS) ternary composites were fabricated via in-situ deposition and hydrothermal growth method for photocatalytic degradation of formaldehyde and sodium isobutyl xanthate (SIBX) under visible light… Click to show full abstract

In this study, Ag3PO4/TiO2@molecular sieve (MS) ternary composites were fabricated via in-situ deposition and hydrothermal growth method for photocatalytic degradation of formaldehyde and sodium isobutyl xanthate (SIBX) under visible light irradiation. XRD, PL, UV-vis, UPS, SEM-EDS and XPS techniques were adopted to characterize the composite. The results show that the MS material was indexed as zeolite P and Ag3PO4-TiO2 hybrid structure could improve the absorption of visible light and greatly inhibit the recombination of photogenerated charge carriers by introducing 3 times TiO2. After evaluating the photocatalytic activity and kinetics model, it is found that photocatalytic activity is consistent with the apparent first-order kinetic model. The Ag3PO4/TiO2-3@MS ternary composite under visible light irradiation appears the highest removal rate with 97.9% of formaldehyde and 96.7% of SIBX, respectively. Furthermore, the reusability of the photocatalyst was investigated by successive reuse. After five reuses, the removal rates reached 97.3% and 94.6% within 105 min for formaldehyde and SIBX, respectively. At last, the proposed mechanism of the photocatalytic reaction and the degradation routes of formaldehyde and SIBX were systematically discussed.

Keywords: photocatalytic activity; tio2 molecular; visible light; molecular sieve; ag3po4 tio2

Journal Title: Environmental research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.