LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biofilm development in a pilot-scale gravity sewer: Physical characteristics, microstructure, and microbial communities.

Photo from wikipedia

The existence of abundant biofilms on sewer pipeline walls can lead to negative environmental impacts, such as poisonous gas release and pipe corrosions through transforming various pollutants. Investigating the formation… Click to show full abstract

The existence of abundant biofilms on sewer pipeline walls can lead to negative environmental impacts, such as poisonous gas release and pipe corrosions through transforming various pollutants. Investigating the formation process of sewer biofilms is of importance in advancing knowledge of sewer operation and maintenance. In this study, the changes in physical characteristics, microstructure, and microbial communities of sewer biofilm were analyzed in-depth in a pilot-scale gravity sewer during a 45-day operation. The results show that a high specific surface area at the early stage could channel the substrates for stimulating the primary colonizers (e.g., Cytophagia, Sphingobacteriia, Alpha-, and Betaproteobacteria), and could further excrete an extracellular matrix to facilitate biofilm growth. The sewer biofilms were gradually formed with 62 g VS/m2 organic content, 1.2 mm biofilm thickness, and 89 mg/cm3 dry density after 45 days operation. Moreover, the biofilm growth promoted the emergence of facultative bacteria and anaerobes (affiliated with Flavobacteriia, Gemmatimonadetes, Deltaproteobacteria, and Epsilonproteobacteria). Microelectrode analysis further verified that an anaerobic zone existed in mature biofilm with a negative oxidation-reduction potential (-105 mV), where approximately 0.1 μmol/L of sulfide was produced. Our results suggest that the migration of the microbial community correlated with the changes in the evolved physical characteristics and microstructure of sewer biofilm, and can contribute to the strategies for sulfide control for improving sewer maintenance.

Keywords: microstructure microbial; characteristics microstructure; pilot scale; scale gravity; microbial communities; physical characteristics

Journal Title: Environmental research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.