The aquatic environment becomes increasingly contaminated by anthropogenic pollutants such as pharmaceutical residues. Due to poor biodegradation and continuous discharge of persistent compounds in sewage water samples, pharmaceutical residues might… Click to show full abstract
The aquatic environment becomes increasingly contaminated by anthropogenic pollutants such as pharmaceutical residues. Due to poor biodegradation and continuous discharge of persistent compounds in sewage water samples, pharmaceutical residues might end up in surface waters when not removed. To minimize this pollution, onsite wastewater treatment techniques might complement conventional waste water treatment plants (WWTPs). Advanced oxidation processes are useful techniques, since reactive oxygen species (ROS) are used for the degradation of unwanted medicine residues. In this paper we have studied the advanced oxidation in a controlled laboratory setting using thermal plasma and UV/H2O2 treatment. Five different matrices, Milli-Q water, tap water, synthetic urine, diluted urine and synthetic sewage water were spiked with 14 pharmaceuticals with a concentration of 5μg/L. All compounds were reduced or completely decomposed by both 150 W thermal plasma and UV/H2O2 treatment. Additionally, also hospital sewage water was tested. First the concentrations of 10 pharmaceutical residues were determined by liquid chromatography mass spectrometry (LC-MS/MS). The pharmaceutical concentration ranged from 0.08 up to 2400 μg/L. With the application of 150 W thermal plasma or UV/H2O2, it was found that overall pharmaceutical degradation in hospital sewage water were nearly equivalent to the results obtained in the synthetic sewage water. However, based on the chemical abatement kinetics it was demonstrated that the degree of degradation decreases with increasing matrix complexity. Since reactive oxygen and nitrogen species (RONS) are continuously produced, thermal plasma treatment has the advantage over UV/H2O2 treatment.
               
Click one of the above tabs to view related content.