LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Occurrence, potential source, and cancer risk of PM2.5-bound polycyclic aromatic hydrocarbons and their halogenated derivatives in Shizuoka, Japan, and Dhaka, Bangladesh.

Because of their unintentional formation and low vapor pressure, polycyclic aromatic hydrocarbons (PAHs) and their halogenated derivatives (XPAHs) in the atmosphere are distributed primarily to aerosolized particles with an aerodynamic… Click to show full abstract

Because of their unintentional formation and low vapor pressure, polycyclic aromatic hydrocarbons (PAHs) and their halogenated derivatives (XPAHs) in the atmosphere are distributed primarily to aerosolized particles with an aerodynamic diameter less than 2.5 μm (PM2.5). However, no information is available regarding the occurrence of PM2.5-bound PAHs and XPAHs in Bangladesh, one of the most highly PM2.5-polluted regions worldwide. In this study, we investigated the occurrence of PM2.5-bound PAHs and XPAHs in the atmospheres of Dhaka in Bangladesh and Shizuoka in Japan (as a reference) and estimated their incremental lifetime cancer risks (ILCRs). In addition, we statistically estimated the potential sources of PM2.5-bound PAHs and XPAHs by using principal component analysis and positive matrix factorization. The median concentration of total PM2.5-bound PAHs and XPAHs in Bangladesh was 24.2 times that in Japan. The estimated potential sources of PAHs clearly differed between Japan and Bangladesh, whereas those of XPAHs were largely (>80%) unknown in both countries. The median ILCR in Bangladesh was 2.81 × 10-3, which greatly exceeded the upper limit of acceptable risk (10-4). These results indicate that comprehensive monitoring and control of atmospheric PM2.5-bound PAHs and XPAHs are needed urgently, especially in highly polluted countries.

Keywords: pahs xpahs; pm2 bound; bound pahs; occurrence

Journal Title: Environmental research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.