LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Laboratory and simulation study on the Cd(Ⅱ) adsorption by lake sediment: Mechanism and influencing factors.

Photo from archive.org

Sediments are the major sinks for Cd(Ⅱ) in the aquatic environment. Here, the detailed binding mechanisms and effects of environmental factors on Cd(Ⅱ) adsorption onto lake sediment were tested by… Click to show full abstract

Sediments are the major sinks for Cd(Ⅱ) in the aquatic environment. Here, the detailed binding mechanisms and effects of environmental factors on Cd(Ⅱ) adsorption onto lake sediment were tested by a batch of adsorption and characteristic experiments. Sediment samples and sediment-Cd complexes were characterized using Scanning electron microscopy, Energy dispersive spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction spectral analyses. The interactive and main effect of parameters such as pH, flow velocity, Cd(II) concentration, sediment particle size, humic acid, fulvic acid and adsorption time involved in the adsorption process were determined using two models based on response surface methodology (RSM) and a back-propagation neural network with genetic algorithm (GABP). Results showed that Cd(II) adsorption onto sediment was mainly achieved through surface complexation with O-containing groups and precipitation with carbonate and sulfide. RSM was favorable for modeling Cd(II) adsorption in lake systems because it intuitively reflected the influence of the factors and had a good fitting precision (R2=0.8838, RSME=2.5496) close to that of the GABP model (R2=0.8959, RSME=2.5410). pH, sediment particle size, and humic acid exerted strong influences on Cd(II) immobilized by the sediment. Overall, our findings facilitate a better understanding of Cd(II) mobility in lakes and provide a reference for controlling heavy metals derived from both aqueous and sediment sources.

Keywords: adsorption lake; laboratory simulation; sediment; lake sediment; spectroscopy

Journal Title: Environmental research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.