LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient visible light photocatalytic NO abatement over SrSn(OH)6 nanowires loaded with Ag/Ag2O cocatalyst.

SrSn(OH)6 (SSOH) possesses a high oxidation potential in the valence band (VB), which is suitable for photocatalytic oxidation removal of pollutants. However, the electrons in the VB of these catalysts… Click to show full abstract

SrSn(OH)6 (SSOH) possesses a high oxidation potential in the valence band (VB), which is suitable for photocatalytic oxidation removal of pollutants. However, the electrons in the VB of these catalysts are difficult to transition to the conduction band (CB) under visible light, which makes it difficult to utilize sunlight effectively. In this work, Ag/Ag2O is loaded on the surface of SSOH nanowires, which stimulates the interfacial charge-transfer transition on SSOH. Compared with pure-phase SSOH, the NO abatement ratio of Ag/Ag2O-SSOH under visible light irradiation is increased to 45.10%. The e- in the VB of Ag2O are excited into the CB under visible light, and are further transferred to the Ag to react with O2 to produce superoxide radicals. The photo-excited e- in the VB of SSOH enter into the VB of Ag2O through interfacial charge-transfer transition to recombine with the photo-generated holes in the VB of Ag2O, thereby leaving photo-generated holes in the VB of SSOH. The holes in the VB of SSOH have sufficient oxidizing ability to oxidize the adsorbed hydroxyl groups into hydroxyl radicals. This work provides a new perspective for photocatalytic removal of pollutants by wide band gap photocatalyst under visible light.

Keywords: efficient visible; ssoh; light photocatalytic; srsn; visible light; abatement

Journal Title: Environmental research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.