LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rapid and efficient reduction of chromate by novel Pd/Fe@biomass derived from Enterococcus faecalis.

Photo from wikipedia

Efficient reduction of chromate is highly desirable for its detoxification and remediation of the contaminated environment. This study described a fusion of the concepts of precious metal biorecovery and fabrication… Click to show full abstract

Efficient reduction of chromate is highly desirable for its detoxification and remediation of the contaminated environment. This study described a fusion of the concepts of precious metal biorecovery and fabrication of Pd/Fe@biomass derived from simulated wastewater. The effectiveness of Pd/Fe@biomass during reduction process of Cr(VI) was evaluated by comparing with pure nZVI, E. faecalis and Pd@biomass. Results showed that Pd(II) could be recovered by E. faecalis with Fe(II) as the electron donor, and precipitation could yield nZVI anchored onto Pd-loaded E. faecalis. The nano particles (NPs) on Pd/Fe@biomass were well-dispersed, which provided 2.70 folds specific surface area comparing with nZVI. Efficient Cr(VI) reduction could be achieved at a higher catalyst dosage, the most appropriated Pd/Fe molar ratio of 2% and a wide pH range. Typically, 0.5 mM Cr(VI) could be completely reduced in 5 min driven by Pd/Fe@biomass under the conditions of dosage of 1.0 g/L and pH 3. Moreover, the mechanisms of Cr(VI) reduction by Pd/Fe@biomass were proposed, which intimately related to nZVI electron donating capacities, Pd catalysis for hydrogenation and galvanic cell effects between Fe and Pd. Therefore, Pd/Fe@biomass could be an alternative for rapid and complete reduction of Cr(VI).

Keywords: reduction; biomass; efficient reduction; biomass derived; reduction chromate

Journal Title: Environmental research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.