LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fe3O4-Mg(OH)2 nanocomposite as a scavenger for silver nanoparticles: Rational design, facile synthesis, and enhanced performance.

Photo from wikipedia

Silver nanoparticles (AgNPs) are considered as emerging contaminants because of their high toxicity and increasing environmental impact. Removal of discharged AgNPs from water is crucial for mitigating the health and… Click to show full abstract

Silver nanoparticles (AgNPs) are considered as emerging contaminants because of their high toxicity and increasing environmental impact. Removal of discharged AgNPs from water is crucial for mitigating the health and environmental risks. However, developing facile, economical, and environment-friendly approaches remains challenging. Herein, an Fe3O4-Mg(OH)2 nanocomposite, as a novel magnetic scavenger for AgNPs, was prepared by loading Fe3O4 nanoparticles on Mg(OH)2 nanoplates in a one-pot synthesis. Batch removal experiments revealed that the maximum removal capacities for the two model AgNPs (citrate- or polyvinylpyrrolidone-coated AgNPs) were 476 and 442 mg/g, respectively, corresponding to partition coefficients 8.03 and 4.89 mg/g/μM. Removal feasibilities over a wide pH range of 5-11 and in real water matrices and scavenger reusability with five cycles were also confirmed. Both Fe3O4 and Mg(OH)2 components contributed to the removal; however, their nanocomposites exhibited an enhanced performance because of the high specific surface area and pore volume. Chemical adsorption and electrostatic attraction between the coatings on the AgNPs and the two components in the nanocomposite was considered to be responsible for the removal. Overall, the facile synthesis, convenient magnetic separation, and high removal performance highlight the great potential of the Fe3O4-Mg(OH)2 nanocomposite for practical applications.

Keywords: synthesis; fe3o4 nanocomposite; enhanced performance; silver nanoparticles; fe3o4

Journal Title: Environmental research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.