In this study we report a method for the rapid and sensitive estimation of bacterial cell concentration in solution based on a colorimetric enzyme/gold nanoshells conjugate system. The CTAB capped… Click to show full abstract
In this study we report a method for the rapid and sensitive estimation of bacterial cell concentration in solution based on a colorimetric enzyme/gold nanoshells conjugate system. The CTAB capped gold nanoshells are electrostatically attracted by both the bacterial surface and the enzyme β-galactosidase. The preferential binding of cationic (CTAB)-functionalized gold nanoshells to the more negative bacterial surfaces leaves active β-galactosidase in solution, providing an enzyme-amplified colorimetric response of the binding event. A progressive increase in the enzyme activity is evidenced by the conversion of the yellow-orange CPRG substrate into the red chromophore chlorophenol red, which can be correlated with increasing bacterial cell numbers. Using this strategy, the quantification of bacteria at concentrations as low as 10 bacteria/mL of solution has been achieved. The present method of bacterial cell load assessment offers a distinct potential advantage over other conventional methods such as plate counting in terms of ease of operation, rapidity, high sensitivity and quantitative detection of bacterial cells.
               
Click one of the above tabs to view related content.