LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synergistic codon optimization and bioreactor cultivation toward enhanced secretion of fungal lignin peroxidase in Pichia pastoris: Enzymatic valorization of technical (industrial) lignins.

Photo by trine from unsplash

Lignin peroxidase (LiP) is a well-recognized enzyme for its ability to oxidize lignins, but its commercial availability is limited, which hinders the biotechnological application of LiP-based bioprocesses in lignocellulose biorefineries.… Click to show full abstract

Lignin peroxidase (LiP) is a well-recognized enzyme for its ability to oxidize lignins, but its commercial availability is limited, which hinders the biotechnological application of LiP-based bioprocesses in lignocellulose biorefineries. This study evaluated a combination strategy to improve the expression of LiP to promote its practical use. The strategy included optimization of the lipH8 gene of Phanerochaete chrysosporium according to the codon usage of Pichia pastoris, followed by fed-batch fermentation using a 14 L bioreactor (10 L working volume). The combination strategy achieved a maximum volumetric LiPH8 activity of 4480 U L-1, protein concentration of 417 mg L-1 and a specific activity of 10.7 U mg-1, which was higher than previous reports. Biochemical characterization showed that the recombinant LiPH8 (rLiPH8) was optimum at pH 3.0, 25 ℃ and 0.4 mM H2O2. Using the optimized conditions, rLiPH8 was used to treat isolated technical lignins namely soda-anthraquinone (SAQ) lignin and steam explosion (S-E) lignin. High-performance gel permeation chromatography (HP-GPC) analysis showed that the molecular weight (Mw) of SAQ and S-E lignins were increased by 1.43-and 1.14-fold, respectively, after the enzymatic treatment. Thermogravimetric analysis (TGA) also showed that the thermal stability of the lignins was improved, indicating that the enzyme treatment of lignins with rLiPH8 resulted in lignin re-polymerization. As the first report on rLiPH8 production using P. pastoris, this study has shed light on the possible route for the enhancement of rLiPH8 production and its potential application for upgrading technical lignins.

Keywords: lignin peroxidase; pastoris; lignin; optimization; pichia pastoris

Journal Title: Enzyme and microbial technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.