LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A wheat bran inducible expression system for the efficient production of α-L-arabinofuranosidase in Bacillus subtilis.

Photo from wikipedia

α-l-arabinofuranosidases (EC 3.2.1.55; AFs) cause the release of arabinosyl residues from hemicellulose polymers such as xylans, and are receiving increased levels of research attention as they could be applied in… Click to show full abstract

α-l-arabinofuranosidases (EC 3.2.1.55; AFs) cause the release of arabinosyl residues from hemicellulose polymers such as xylans, and are receiving increased levels of research attention as they could be applied in a range of processes that involve the enzymatic degradation of xylans. The secretory production of bacterial AFs has not been attempted previously. In this study, we designed a unique induction system for the production of a recombinant AF in Bacillus subtilis in order to exploit its enzymic degradation of wheat bran. We found that non-starch phytochemicals were more efficient than d-xylose when inducing the expression of T7 RNA polymerase and driving the transcription of AF by the T7 promoter. The host cell, B. subtilis (ATCC 6051a-derived strain 164T7P) was engineered to incorporate a DNA cassette that expressed T7 RNA polymerase under the control of a d-xylose inducible promoter (PxylA). The T7 promoter engineered into 164T7P was initially tested and compared with P43 in terms of GFP expression; we found that the expression level of GFP by the T7 promoter was ten-fold higher than that achieved by P43. When cultured in a flask with gentle shaking, and with d-xylose as an inducer, the recombinant strain successfully expressed arbf, a family 51 (GH 51) glycoside hydrolase from Bacillus licheniformis, and secreted 141.4 ± 4.8 U/mL of enzyme, with a Km of 1.4 ± 0.1 mM and a kcat of 139.4 s-1. However, the protein was devoid of a secretary signal peptide. When cultures were supplemented with wheat bran, the maximal yield of the secreted AF reached 194.8 ± 4.1 U/mL. The results provide a foundation for the high level production of heterologous proteins using wheat bran as the inducer in B. subtilis.

Keywords: bacillus; production; expression; wheat bran

Journal Title: Enzyme and microbial technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.