In this study, an enzyme-triggered system based on β-cyclodextrin (β-CD) has been developed to achieve controlled release of hydrophobic drugs in the presence of maltogenic amylase (MAase). The inclusion complex… Click to show full abstract
In this study, an enzyme-triggered system based on β-cyclodextrin (β-CD) has been developed to achieve controlled release of hydrophobic drugs in the presence of maltogenic amylase (MAase). The inclusion complex formation of curcumin (CUR), as a model anticancer compound, with β-CD was characterized by fluorescence and Fourier transform infrared (FTIR) spectroscopy. CUR was loaded into β-CD with an encapsulation efficiency of approximately 30 %. The in vitro profiles of CUR release from β-CD showed that 100 % of the drug was released after one hour incubation in the presence of MAase with cyclodextrin degrading activity. Fluorescence microscopy images indicate a significantly greater cellular uptake of CUR using β-CD-CUR/MAase system compared to β-CD-CUR inclusion complex without MAase. The β-CD-CUR/MAase system exhibited lower IC50 values and greater anti-proliferative effects in comparison with free CUR and β-CD-CUR in MCF-7 and Huh-7 cancer cells. The results from fluorescence microscopy and flow cytometric assay using the acridine orange/ethidium bromide and Annexin V-PE/7-AAD staining suggest that the β-CD-CUR/MAase system exhibited higher cytotoxic and apoptotic effects on cancer cells compared to other formulations. This triggered release of CUR in the presence of MAase is owing to the β-CD degradation by MAase resulting ring opening and chain scission in β-CD. We demonstrate that this enzyme-mediated controlled release system has a potential application for controlled release of poorly water-soluble drugs or hydrophobic compounds such as CUR.
               
Click one of the above tabs to view related content.