LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identification of methionine adenosyltransferase with high diastereoselectivity for biocatalytic synthesis of (S)-S-adenosyl-l-methionine and exploring its relationship with fluorinated biosynthetic pathway.

Photo by martindorsch from unsplash

Natural fluorinated products are rare and attract great attention. The de novo fluorometabolites biosynthetic pathway in microbes has been studied. It is revealed that the carbon-fluorine (C-F) bond is formed… Click to show full abstract

Natural fluorinated products are rare and attract great attention. The de novo fluorometabolites biosynthetic pathway in microbes has been studied. It is revealed that the carbon-fluorine (C-F) bond is formed by an exotic enzyme called fluorinase (FLA) when using fluorine ions and S-adenosyl-l-methionine (SAM) as substrates. However, the resource of the precursor SAM is still elusive. To solve this, a novel methionine adenosyltransferase from Streptomyces xinghaiensis (SxMAT) was identified and characterized. We proved that SAM was enzymatically synthesized by SxMAT, an enzyme that mediated the reaction between adenosine triphosphate (ATP) and l-methionine (l-Met) with 99% diastereoisomeric excess (d.e.) and 80% yield. Such high diastereoselectivity had never been reported before. SxMAT was a Co2+-dependent metalloenzyme. The results showed that the metal cobalt ion contributes to the activity and selectivity of SxMAT. Molecular docking was performed to reveal its catalytic mechanism. The optimal temperature and pH were 55 °C and 8.5, respectively. Lastly, a two-step tandem enzymatic reaction using SxMAT and FLA both from S. xinghaiensis to generate 5'-fluoro-deoxyadenosine (5'-FDA) was performed. This implied that SxMAT may be present in this fluorometabolites biosynthetic route. These results suggested that SxMAT could be a useful biocatalyst for the synthesis of optically pure (S)-S-adenosyl-l-methionine, an important nutraceutical. In addition, SxMAT will probably play an important role in the biosynthetic pathway of fluorinated natural products in bacteria.

Keywords: high diastereoselectivity; methionine; adenosyl methionine; biosynthetic pathway; methionine adenosyltransferase

Journal Title: Enzyme and microbial technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.