LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mantle transition zone beneath a normal seafloor in the northwestern Pacific: Electrical conductivity, seismic thickness, and water content

Photo from wikipedia

Abstract We conducted a joint electromagnetic (EM) and seismic experiment to reveal the mantle structure beneath a normal seafloor at 130–145 Ma in the northwestern Pacific, where the seafloor is… Click to show full abstract

Abstract We conducted a joint electromagnetic (EM) and seismic experiment to reveal the mantle structure beneath a normal seafloor at 130–145 Ma in the northwestern Pacific, where the seafloor is relatively flat and the underlying mantle is expected to be normal (free from tectonic perturbations). In the experiment, we deployed state-of-the-art instruments in two arrays from 2010–2015. Here, we report the result of analyses of the EM and seismic data for investigating the mantle transition zone (MTZ) structure. The EM data analysis revealed that an electrical conductivity structure below both arrays was approximated by an average 1-D model of the north Pacific, and showed a possible downward increase in conductivity at the top of the MTZ. From the P-wave receiver function analysis, perturbations in the MTZ thickness from a global average were estimated to be +20 km and +2 km below the northern and southern arrays, respectively, from which temperature profiles in the MTZ below these two arrays were then estimated. We jointly interpreted the profiles of electrical conductivity and thus estimated temperature, with reference to the experimental values of the effects of water on the electrical conductivities of MTZ minerals (wadsleyite and ringwoodite) from mineral physics. The upper bound of the water content below the northern array was determined to be 0.4 wt.% or 0.04 wt.%, depending on different results of mineral physics, and that below the southern array was determined to be slightly smaller. The lower bound of the water content was not constrained by our data. Our results indicate that the MTZ beneath the normal seafloor in the northwestern Pacific is drier than subduction zones, and may be a water-poor region in a plum-pudding mantle model.

Keywords: normal seafloor; northwestern pacific; water; beneath normal; conductivity; electrical conductivity

Journal Title: Earth and Planetary Science Letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.