Abstract Seismic tomography resolves anomalies interpreted as oceanic lithosphere subducted deep into Earth's lower mantle. However, the fate of the compositionally distinct oceanic crust that is part of the lithosphere… Click to show full abstract
Abstract Seismic tomography resolves anomalies interpreted as oceanic lithosphere subducted deep into Earth's lower mantle. However, the fate of the compositionally distinct oceanic crust that is part of the lithosphere is poorly constrained but provides important constraints on mixing processes and the recycling process in the deep Earth. We present high-resolution seismic array analyses of anomalous P-waves sampling the deep mantle, and deterministically locate heterogeneities in the lowermost 300 km of the mantle. Spectral analysis indicates that the dominant scale length of the heterogeneity is 4 to 7 km. The heterogeneity distribution varies laterally and radially and heterogeneities are more abundant near the margins of the lowermost mantle Large Low Velocity Provinces (LLVPs), consistent with mantle convection simulations that show elevated accumulations of deeply advected crustal material near the boundaries of thermo-chemical piles. The size and distribution of the observed heterogeneities is consistent with that expected for subducted oceanic crust. These results thus suggest the deep mantle contains an imprint of continued subduction of oceanic crust, stirred by mantle convection and modulated by long lasting thermo-chemical structures. The preferred location of the heterogeneity in the lowermost mantle is consistent with a thermo-chemical origin of the LLVPs. Our observations relate to the mixing behaviour of small length-scale heterogeneity in the deep Earth and indicate that compositional heterogeneities from the subduction process can survive for extended times in the lowermost mantle.
               
Click one of the above tabs to view related content.