LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The effect of iron and aluminum incorporation on lattice thermal conductivity of bridgmanite at the Earth's lower mantle

Photo by kevinwolf from unsplash

Abstract Bridgmanite (Bdg), iron (Fe)- and aluminum (Al)-bearing magnesium silicate perovskite is the most abundant mineral in the Earth's lower mantle. Thus, its thermal conductivity governs the lower mantle thermal… Click to show full abstract

Abstract Bridgmanite (Bdg), iron (Fe)- and aluminum (Al)-bearing magnesium silicate perovskite is the most abundant mineral in the Earth's lower mantle. Thus, its thermal conductivity governs the lower mantle thermal conductivity that critically controls the thermo-chemical evolution of both the core and the lower mantle. While there is extensive research for the lattice thermal conductivity of MgSiO3 Bdg, the effects of Fe and Al incorporation on its lattice thermal conduction are still controversial. Here we report the lattice thermal conductivity of Mg0.832Fe0.209Al0.060Si0.916O3 Bdg measured up to 142 GPa at 300 K using the pulsed light heating thermoreflectance technique in a diamond anvil cell. The results show that the lattice thermal conductivity of Bdg is 25.5 ± 2.2 W/m/K at 135 GPa and 300 K, which is 19% lower than that of Fe and Al-free Bdg at identical conditions. Considering the temperature effect on the lattice conductivity and the contribution of radiative thermal conductivity, the total thermal conductivity of Fe and Al-bearing Bdg does not change very much with temperature at 135 GPa, and could be higher than that of post-perovskite with identical chemical composition.

Keywords: lattice thermal; thermal conductivity; conductivity; lower mantle; bdg

Journal Title: Earth and Planetary Science Letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.