LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A phase of transient subsidence, sediment bypass and deposition of regressive-transgressive cycles during the breakup of Iberia and Newfoundland

Photo by zachwear from unsplash

Abstract Seismic, outcrop and well data from West Iberia and Newfoundland are used to investigate sediment stacking patterns during continental breakup as a function of tectonic subsidence. In West Iberia,… Click to show full abstract

Abstract Seismic, outcrop and well data from West Iberia and Newfoundland are used to investigate sediment stacking patterns during continental breakup as a function of tectonic subsidence. In West Iberia, two breakup sequences are revealed on seismic data by marked strata offlap oceanwards from the present-day continental shelf. This character is similar to Newfoundland, where correlative strata comprise Lower Cretaceous–Cenomanian coarse-grained siliciclastics accumulated around local sediment-source areas. The interpreted data reveal that the two breakup sequences: 1) materialise sediment bypass onto continental-slope depocentres that experienced important tectonic subsidence during continental breakup, but without showing typical syn-rift growth packages; 2) generate specific forced-regressive stratigraphic intervals that relate to uplift and exhumation of the proximal margin. Subsidence and sediment stacking patterns in both West Iberia and Newfoundland reflect similar continental breakup processes as they evolved from the upper lithosphere- to their mantle-breakup stages. On both margins, coarse-grained siliciclastic units on the proximal margin give rise to thick shaley successions in deep-water basins. This work also confirms that in a setting dominated by a significant sediment influx, yet lacking the burial rates of continental slope basins in Newfoundland, West Iberia comprised accommodation-driven basins during continental breakup, not necessarily sediment starved. As a corollary of our analysis, we classify breakup sequences around the world based on the characteristic lithologies of their regressive–transgressive depositional cycles.

Keywords: west iberia; iberia newfoundland; breakup; continental breakup; subsidence; sediment bypass

Journal Title: Earth and Planetary Science Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.