LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Melting experiments on the Fe–C binary system up to 255 GPa: Constraints on the carbon content in the Earth's core

Photo from wikipedia

Abstract Phase relations, including the eutectic liquid composition in the Fe–C binary system, remain unclear under the core pressure range, which makes estimating the carbon budget in the Earth's core… Click to show full abstract

Abstract Phase relations, including the eutectic liquid composition in the Fe–C binary system, remain unclear under the core pressure range, which makes estimating the carbon budget in the Earth's core difficult. To explore this issue, we have conducted melting and subsolidus experiments on Fe–C alloys in a diamond-anvil cell up to 255 GPa. Textural and compositional characterizations of quenched samples show that carbon concentration in the eutectic liquid slightly decreases with increasing pressure and is about 3 wt.% at the inner core boundary (ICB) pressure. The solubility of carbon in solid Fe is found to be almost constant at ∼1.0 wt.%. In situ X-ray diffraction data indicate that Fe forms eutectic melting with Fe3C to 203 GPa and with Fe7C3 at 255 GPa. Previous studies on liquid Fe–C alloys suggested that the density of the outer core is explained by liquid Fe containing 1.8 to 4.2 wt.% C. If the liquid core includes

Keywords: binary system; 255 gpa; earth core; core

Journal Title: Earth and Planetary Science Letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.