LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Repeated magmatic buildup and deep “hot zones” in continental evolution: The Cadomian crust of Iran

Photo by jessbaileydesigns from unsplash

Abstract The generation and differentiation of continental crust by arc magmatism is strongly influenced by episodes of high magmatic flux (“flare-ups”). Magmatic flare-ups encourage the development of deep crustal hot… Click to show full abstract

Abstract The generation and differentiation of continental crust by arc magmatism is strongly influenced by episodes of high magmatic flux (“flare-ups”). Magmatic flare-ups encourage the development of deep crustal hot zones where magmatic differentiation and density stratification combine to form the upper felsic and lower mafic continental crust. Such processes, which are responsible for the construction of continental arc crust, are prolonged events, which build a ∼30-40 km arc crust over tens of million years (∼100 Myr). New zircon U-Pb data reveal that the construction of Cadomian crust from NE Iran occurred over ∼15 ± 0.3 Myr. However, compiled zircon U-Pb ages reveal a prolonged magmatic flare-up of ∼45 Myr; ∼570 to 525 Ma. Basement outcrops in NE Iran expose lower- and upper crust that show how magmatic-geochemical differentiation occurred deep beneath a Cadomian continental arc in a crustal hot zone. Isotopic data for igneous rocks produced during this 45 Myr episode reveal interactions between mantle-derived melts and old continental crust. Synthesis of new and published data indicates that this type of interaction is common during periods of high magmatic fluxes. Our results indicate that differentiation of mafic melts in the lower crust during prolonged magmatic flare-ups plays a key role in building a stratified continental crust.

Keywords: continental crust; crust; cadomian crust; crust iran; hot zones; differentiation

Journal Title: Earth and Planetary Science Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.