LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Absolute dating of the L-chondrite parent body breakup with high-precision U–Pb zircon geochronology from Ordovician limestone

Photo from wikipedia

Abstract The breakup of the L-chondrite parent body (LCPB) in the mid-Ordovician is the largest documented asteroid breakup event during the past 3 Gyr. It affected Earth by a dramatic… Click to show full abstract

Abstract The breakup of the L-chondrite parent body (LCPB) in the mid-Ordovician is the largest documented asteroid breakup event during the past 3 Gyr. It affected Earth by a dramatic increase in the flux of L-chondritic material and left prominent traces in both meteorite and sedimentary records. A precise constraint on the timing of the LCPB breakup is important when evaluating the terrestrial biotic and climatic effects of the event, as well as for global stratigraphic correlations. Direct dating using heavily shocked L chondrites is hampered by both incomplete initial K-Ar degassing and isotopic resetting by later impact events. In order to better constrain the absolute age of this event we carried out high-precision U–Pb dating of zircons from three limestone beds recording discrete volcanic ash fallouts within mid-Ordovician strata in southern Sweden. These strata are rich in fossilized L-chondritic meteorites (1-20 cm large) that arrived on Earth shortly after the breakup event. Zircons from the ash-bearing layers provide stratigraphically consistent depositional ages that range from 464.22 ± 0.37 Ma to 465.01 ± 0.26 Ma. Combined with recently published 3He profiles that pinpoint the arrival on Earth of the first dust from the breakup, and sedimentation rates constrained by cosmogenic 21Ne in the fossil meteorites, the LCPB breakup is estimated to have occurred at 465.76 ± 0.30 Ma. This provides the presently most precise absolute dating of the LCPB breakup, enabling a robust global stratigraphic correlation of bounding strata. Based on our new U–Pb data for the ash-bearing beds, the absolute ages for the boundaries of biozones and Dapingian–Floian stages overlap within error with those given by the 2012 Geological Timescale and require no modification.

Keywords: absolute dating; high precision; parent body; breakup; chondrite parent; geochronology

Journal Title: Earth and Planetary Science Letters
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.