Abstract CM2 chondrites experienced widespread aqueous and short term thermal alteration on their parent bodies. Whilst previous Raman spectroscopic investigations have investigated insoluble organic matter (IOM), they have not taken… Click to show full abstract
Abstract CM2 chondrites experienced widespread aqueous and short term thermal alteration on their parent bodies. Whilst previous Raman spectroscopic investigations have investigated insoluble organic matter (IOM), they have not taken into account the binary nature of IOM. Studies employing mass spectrometry have indicated that IOM also known as macromolecular organic matter (MOM) is in fact composed of two distinct fractions: labile organic matter (LOM) and refractory organic matter (ROM). The ROM component represents the aromatic rich and heteroatom poor component of IOM/MOM, whilst the LOM fraction represents a more heteroatom and aliphatic rich component. Here we report Raman 2D maps and spectroscopic data for Murchison and Mighei, both before and after chemical degradation, which attacks and liberates LOM. The removal of LOM simulates the effects of aqueous alteration, where ester and ether bonds are broken and is thought to release some components to the soluble organic matter (SOM) fraction, also known as the free organic matter fraction (FOM). Raman spectroscopy can be used to reveal the nature of bonding (sp2 and sp3) within carbonaceous materials such as meteoritic organic matter, through evaluation of the D and G band peak centres and FWHM values from the recorded data. The presence of sp3 orbitals indicates that the organic materials contain aliphatic linkages and/or heteroatoms. Statistical analysis of the Raman parameters obtained here indicates that the organic matter originating the Raman response is indistinguishable between the bulk (chemically untreated) and chemically degraded (treated with KOH and HI) samples. Such an observation indicates that the ROM fraction is the major contributor to the Raman response of meteoritic organic matter and thus Raman spectroscopy is unlikely to record any aqueous alteration processes that have affected meteoritic organic matter. Therefore, studies which use Raman to probe the IOM are investigating just one of the components of IOM and not the entire fraction. Studies that aim to investigate the effects of aqueous alteration on meteoritic organic matter should use alternate techniques to Raman spectroscopy. Furthermore, the indistinguishable nature of the Raman response of ROM from Murchison and Mighei suggests these meteorites inherited a ROM component that is chemically similar, reflecting either a common process for the formation of CM2 meteoritic ROM and/or that these meteorites probed the same ROM reservoir.
               
Click one of the above tabs to view related content.