LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Convolutional and recurrent neural network based model for short-term load forecasting

Photo from wikipedia

Abstract The consumed electrical load is affected by many external factors such as weather, season of the year, weekday or weekend and holiday. In this paper, it is tried to… Click to show full abstract

Abstract The consumed electrical load is affected by many external factors such as weather, season of the year, weekday or weekend and holiday. In this paper, it is tried to provide a high accurate forecasting model for hourly load consumption with considering these external variables. At first, the electrical load and temperature time series are rearranged into separate two-dimensional matrices. Convolutional neural networks (CNNs) are utilized to extract the load and temperature features. The autocorrelation coefficients of the load and temperature sequences are used to determine the kernel size of the convolutional layers. At this stage, the convolutional layers specifically convert the univariate data to multidimensional features by applying two-dimensional convolutional kernels, which potentially increase the forecasting capability of recurrent neural networks. On the other hand, long short term memory (LSTM) and gated recurrent unit (GRU) are able to hold short-term and long-term memories. Therefore, in the next stage, the multidimensional features extracted by 2-D CNNs are fed as input to the bidirectional propagating GRU and LSTM units to perform hourly electrical load forecasting. The results of experiments on two datasets show the superiority of the proposed method compared to some recent works in the field of short-term load forecasting.

Keywords: term load; term; load forecasting; load; short term; recurrent neural

Journal Title: Electric Power Systems Research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.