LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Predicting initial electricity demand in off-grid Tanzanian communities using customer survey data and machine learning models

Photo from wikipedia

Abstract Mini-grids are the lowest-cost solutions for electrifying many homes and businesses in rural communities with low energy access. Estimates of the electricity demand of unelectrified customers are a crucial… Click to show full abstract

Abstract Mini-grids are the lowest-cost solutions for electrifying many homes and businesses in rural communities with low energy access. Estimates of the electricity demand of unelectrified customers are a crucial input to selecting mini-grid sites, projecting revenue, and sizing system components to provide adequate capacity while minimizing capital costs. Typical customer survey-based demand estimates for these communities — where there are no historical data — are not reliable, typically overpredicting demand. Here, we test a data-driven approach to demand prediction using survey and smart meter data from 1378 Tanzanian mini-grid customers. We found that models incorporating customer survey data into their predictions consistently out-performed a baseline model that did not. Our best-performing model, the LASSO, predicted daily electricity demand with a median absolute error of 66% and 37% for individual connections and mini-grid sites, respectively. Quantitative measures of variable importance show that most survey data are not useful for estimating demand. These results suggest that surveys should prioritize thorough inventories of prospective customers' currently-owned appliances instead of detailed demographic information or self-reported habits and plans. Pairing shortened questionnaires with smart meter data from preexisting mini-grids can improve estimates of initial customer electricity demand significantly compared to standard field practices.

Keywords: electricity demand; survey data; customer survey; demand; survey

Journal Title: Energy for Sustainable Development
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.