LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Small-scale Experimental Testing of a Novel Marine Floating Platform with Integrated Hydro-pneumatic Energy Storage

Photo from wikipedia

Abstract Co-locating energy storage within the floating platform of offshore renewable energy systems is an effective way of reducing the cost and environmental footprint of marine energy storage devices. However,… Click to show full abstract

Abstract Co-locating energy storage within the floating platform of offshore renewable energy systems is an effective way of reducing the cost and environmental footprint of marine energy storage devices. However, the development of suitable, non-hazardous technologies, and the influence of the marine environment on their efficiency remains an open problem. Research at the University of Malta has culminated in the Floating Liquid-piston Accumulator using Seawater under Compression (FLASC) concept, a solution involving hydro-pneumatic energy storage tailored for offshore renewables. A small-scale prototype was deployed at a sheltered marine location in the Maltese Islands, in the central Mediterranean Sea. The aim of the experimental campaign was to measure the performance of the energy storage system, and to quantify the effects of different system parameters along with the surrounding meteorological conditions. Results from selected charging-discharging cycles are presented, these include different scheduling schemes and pressure ranges. Overall, results indicate that the experimental system consistently demonstrated a high thermal efficiency (> 93%) across hundreds of charging cycles. Operating pressure range and charging schedule play a limited role on the hydro-pneumatic process, whereas seasonal temperature changes play a more significant role, in that such changes can slightly alter the effective storage capacity of the system. Results from this experimental work provide a practical proof-of-concept for hydro-pneumatic marine energy storage, and can enable key conclusions to be drawn providing a basis to numerous ongoing developments in fluid-based energy storage systems for offshore implementation.

Keywords: energy storage; hydro pneumatic; storage; energy; floating platform; marine

Journal Title: Journal of Energy Storage
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.