LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrication and characterization of phase change material-SiO2 nanocomposite for thermal energy storage in buildings

Photo from wikipedia

Abstract Phase change materials (PCMs), which can absorb or release large latent heat over a defined temperature range while the phase transition occurs, have achieved huge attention due to the… Click to show full abstract

Abstract Phase change materials (PCMs), which can absorb or release large latent heat over a defined temperature range while the phase transition occurs, have achieved huge attention due to the environmental concerns and energy crisis. In recent years, phase change material nanocomposites are extensively used in thermal energy storage and energy management. Here, a shape-stabilised PCM nanocomposite, consisting n-hetadecane as a PCM and SiO2 nanoparticles as a supportive material was successfully prepared using an impregnation method with different mass fraction of PCM. The formation of n-heptadecane-SiO2 nanocomposite was approved using X-ray diffraction, FTIR spectroscopy, and SEM studies. The melting and freezing latent heats of the nanocomposite reached 123.8 and 120.9 J/g, respectively, and the mass loading percentage of n-hetadecane in the nanocomposite which was estimated using DSC was about 54.6 wt.%. The resulting nanocomposite possessed excellent thermal cycling reliability and its thermal conductivity was also improved compared to pure n-heptadecane. Additionally, Gypsum composite board containing n-hetadecane-SiO2 nanocomposite showed acceptable temperature control performance compared to ordinary gypsum board and hence, the obtained nanocomposite can be suitable for storing thermal energy and indoor temperature regulation in the buildings.

Keywords: phase change; energy; energy storage; thermal energy; sio2 nanocomposite

Journal Title: Journal of energy storage
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.