Abstract Available energy and available capacity are key factors for dimensioning batteries. Discharge duration of a battery and its dependency on discharge current amplitude are well described by Peukert’s law… Click to show full abstract
Abstract Available energy and available capacity are key factors for dimensioning batteries. Discharge duration of a battery and its dependency on discharge current amplitude are well described by Peukert’s law from low to medium current ranges. Other equations describe this dependency up to very high current rates, including the currents occurring during a short circuit. It is not current and capacity, but energy and power which are the key parameters for dimensioning battery systems. Thus, the available power of battery cells, vs. the discharge duration was investigated from low to high constant power discharge loads. Based on the results of these experiments, a correlation of the maximum discharge duration for low to medium discharge power pulses, similar to the Peukert’s equation was found. Additionally, a new equation is proposed, describing the power range from low to very high discharge power rates. The result of this work simplifies the design of battery systems, its electromechanical components, as well as improves the prediction of available boost power cost-effective way e.g. for hybrid electric vehicles.
               
Click one of the above tabs to view related content.