LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improved Electrochemical Performances of Graphene Hybrids Embedded with Silica as the Functional Connection Layer for Supercapacitors

Photo from wikipedia

Abstract Graphene, conducting polymers and their hybrids have more superiority and potential as electrode materials for supercapacitors. Neverthless, graphene encountered challenges to guarantee adequate interactions with conducting polymers while maintaining… Click to show full abstract

Abstract Graphene, conducting polymers and their hybrids have more superiority and potential as electrode materials for supercapacitors. Neverthless, graphene encountered challenges to guarantee adequate interactions with conducting polymers while maintaining a high level of naked surface for the permeability with electrolytes. To tackle this challenge, developing functionalized or new structured graphene hybrids and their controllable preparation novel strategy is urgent and a focus strategy. Here, SiO2/graphene/polyaniline (SGP) is fabricated through the cross-dimensional assembling of two-dimensional graphene with zero-dimensional SiO2 and polyaniline successively. SiO2 is chosen as a functional connection layer between electrodes and electrolytes, and between hydrophobic graphene and polyaniline for aqueous supercapacitors. Hydrophilic SiO2 not only enhanced the interfacial interactions and ion exchanges at the electrolyte/electrode interface, but also suppressed the stacking between graphene and polyaniline, and among graphene layers. As a result, both the electric double layer capacitance of graphene and pseudocapacitance of polyaniline are better utilized with the aid of SiO2. SGP shows a capacitance retention of 90% after 3500 cycles and improved electrochemical performances, higher than graphene/polyaniline based on both three-electrode and two-electrode cell configurations. These findings demonstrate that SiO2 embeded graphene hybrids is an effective strategy to promote the overall electrochemical properties for supercapacitors.

Keywords: graphene hybrids; graphene; functional connection; layer; graphene polyaniline

Journal Title: Journal of energy storage
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.