LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A new hierarchically porous Cu-MOF composited with rGO as an efficient hybrid supercapacitor electrode material

Photo from wikipedia

Abstract Exploring new materials for efficient energy storage is imperative to derive uninterrupted energy supply from non-conventional sustainable sources. The present paper reports on the synthesis of a new Cu-MOF… Click to show full abstract

Abstract Exploring new materials for efficient energy storage is imperative to derive uninterrupted energy supply from non-conventional sustainable sources. The present paper reports on the synthesis of a new Cu-MOF (HMRL-1), involving the reaction of a tetracarboxylic linker and Cu2+ salt under solvothermal conditions. Using a simple ultrasonication approach, the as-synthesized MOF has been further used to fabricate a composite with reduced graphene oxide (rGO) (R). The resulting composite (HMRL-1/R) has been explored as a binder-free supercapacitor electrode material for deriving enhanced charge storage capacity. The supercapacitor performance of the composite material has been investigated by cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). The electrochemical investigations reveal that HMRL-1/R composite exhibits hybrid capacitive features with a specific capacitance (CS) of 366.6 Fg−1 at 1 Ag−1 and excellent cyclic stability and performance retention, which is much higher than that of pristine HMRL-1 and R due to their synergistic effect. All the findings suggest that as-prepared material is a promising candidate for an electrode material in supercapacitor applications.

Keywords: new hierarchically; mof; electrode material; supercapacitor; supercapacitor electrode

Journal Title: Journal of Energy Storage
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.