LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effective utilization of Fe(III)-based metal organic framework-coated cellulose paper for highly efficient elimination from the liquid phase of paracetamol as a pharmaceutical pollutant

Photo from wikipedia

Abstract This work aims to evaluate the potential utilization of Fe(III)-based metal organic framework-coated cellulose paper (MIL-100(Fe)@CP) for the elimination of paracetamol (PCM) from water systems. The characterization of MIL-100(Fe)@CP… Click to show full abstract

Abstract This work aims to evaluate the potential utilization of Fe(III)-based metal organic framework-coated cellulose paper (MIL-100(Fe)@CP) for the elimination of paracetamol (PCM) from water systems. The characterization of MIL-100(Fe)@CP was examined with Fourier transform infrared spectrometry (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis (EDX). The modeling and optimization studies were examined using response surface methodology (RSM). The effects of adsorption parameters influencing PCM removal such as initial PCM concentration ( C o ), pH of solution, agitation time, and adsorbent dosage were evaluated by central composite design (CCD) in RSM. For maximum PCM removal efficiency, the optimum C o , pH, agitation time, and adsorbent dosage were 35.60 mg/L, 6.44, 167.06 min, and 16.87 mg, respectively. In these conditions, the best PCM removal efficiency was determined as 89.75%. The adsorption kinetic data for PCM were successfully expressed by the Weber–Morris and pseudo-second-order models. Moreover, the isotherm data was best fitted to the Langmuir isotherm model. All results indicate that RSM is efficient in predicting the removal efficiency of PCM onto MIL-100(Fe)@CP and the prepared novel material is a hopeful adsorbent for the highly effective elimination of pharmaceuticals such as PCM from aquatic systems.

Keywords: iii based; pcm; utilization iii; based metal; elimination; metal organic

Journal Title: Environmental Technology and Innovation
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.