LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Non-covalently coated biopolymeric nanoparticles for improved tamoxifen delivery

Photo from archive.org

Abstract About one-fifth of cancer patients suffer from breast cancer worldwide. Polymeric nanoparticles play an important role in delivering chemotherapeutic agents in a controlled manner. Polylysine coated tamoxifen loaded poly(lactic-… Click to show full abstract

Abstract About one-fifth of cancer patients suffer from breast cancer worldwide. Polymeric nanoparticles play an important role in delivering chemotherapeutic agents in a controlled manner. Polylysine coated tamoxifen loaded poly(lactic- co -glycolic acid) nanoparticles were prepared using a single emulsion technique with subsequent non-covalently surface functionalization in order to improve nanoparticle-cell interaction and hence tamoxifen therapeutic effect. The obtained nanoparticles were fully characterized in terms of their physico-chemical properties as well of their in vitro performance against human breast adenocarcinoma cells. The successful incorporation of tamoxifen within the hydrophobic matrix of nanoparticles is evidenced by a high loading efficiency (86%). Furthermore, ideal size, morphology and hydrodynamic properties are observed being the proposed nanocarrier capable of display a valuable antiproliferative in vitro effect.

Keywords: biopolymeric nanoparticles; non; covalently coated; nanoparticles improved; coated biopolymeric; non covalently

Journal Title: European Polymer Journal
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.