Abstract Natural polymer based self-healing hydrogels have attracted intense consideration due to their attributable and a wide range of applications. However, to design hydrogels having excellent self-healing efficiency and super… Click to show full abstract
Abstract Natural polymer based self-healing hydrogels have attracted intense consideration due to their attributable and a wide range of applications. However, to design hydrogels having excellent self-healing efficiency and super mechanical strength is still a big challenge. Herein, we report hydroxyethyl cellulose based self-healing conducting hydrogels with enhanced mechanical properties by the molecular engineering of Fe3+ ions among the functional groups of polyacrylic acid-co-polyacrylamide and hydroxyethyl cellulose chain through supramolecular interactions. The engineered hydrogels exhibit a high mechanical strength with a tensile stress of 3.50 MPa and tensile strain of 1245%, along with compression stress of 32 MPa. These hydrogels also show about 98% self-healing efficiency as well as exhibit 2.4 × 10−3 S/cm electrical conductive. Moreover, manipulating the various parameters, the mechanical and self-healing efficiency of the prepared hydrogel can be adjusted. This work will encourage researchers to focus on this facile technique for the synthesis of self-healing hydrogel materials with enhanced mechanical properties.
               
Click one of the above tabs to view related content.