LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Differences in the properties of porcine cortical and nuclear fiber cell plasma membranes revealed by saturation recovery EPR spin labeling measurements.

Photo by dawson2406 from unsplash

Eye lens membranes are complex biological samples. They consist of a variety of lipids that form the lipid bilayer matrix, integral proteins embedded into the lipid bilayer, and peripheral proteins.… Click to show full abstract

Eye lens membranes are complex biological samples. They consist of a variety of lipids that form the lipid bilayer matrix, integral proteins embedded into the lipid bilayer, and peripheral proteins. This molecular diversity in membrane composition induces formation of lipid domains with particular physical properties that are responsible for the maintenance of proper membrane functions. These domains can be, and have been, effectively described in terms of the rotational diffusion of lipid spin labels and oxygen collision with spin labels using the saturation recovery (SR) electron paramagnetic resonance method and, now, using stretched exponential function for the analysis of SR signals. Here, we report the application of the stretched exponential function analysis of SR electron paramagnetic resonance signals coming from cholesterol analog, androstane spin label (ASL) in the lipid bilayer portion of intact fiber cell plasma membranes (IMs) isolated from the cortex and nucleus of porcine eye lenses. Further, we compare the properties of these IMs with model lens lipid membranes (LLMs) derived from the total lipids extracted from cortical and nuclear IMs. With this approach, the IM can be characterized by the continuous probability density distribution of the spin-lattice relaxation rates associated with the rotational diffusion of a spin label, and by the distribution of the oxygen transport parameter within the IM (i.e., the collision rate of molecular oxygen with the spin label). We found that the cortical and nuclear LLMs possess very different, albeit homogenous, spin lattice relaxation rates due to the rotational diffusion of ASL, indicating that the local rigidity around the spin label in nuclear LLMs is considerably greater than that in cortical LLMs. However, the oxygen transport parameter around the spin label is very similar and slightly heterogenous for LLMs from both sources. This heterogeneity was previously missed when distinct exponential analysis was used. The spin lattice relaxation rates due to either the rotational diffusion of ASL or the oxygen collision with the spin label in nuclear IMs have slower values and wider distributions compared with those of cortical IMs. From this evidence, we conclude that lipids in nuclear IMs are less fluid and more heterogeneous than those in cortical membranes. Additionally, a comparison of properties of IMs with corresponding LLMs, and lipid and protein composition analysis, allow us to conclude that the decreased lipid-to-protein ratio not only induces greater rigidity of nuclear IMs, but also creates domains with the considerably decreased and variable oxygen accessibility. The advantages and disadvantages of this method, as well as its use for the cluster analysis, are discussed.

Keywords: cortical nuclear; analysis; spin label; spin; rotational diffusion

Journal Title: Experimental eye research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.