LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced classical complement pathway activation and altered phagocytosis signaling molecules in human epilepsy

Photo from wikipedia

Abstract Microglia‐mediated neuroinflammation is widely associated with seizures and epilepsy. Although microglial cells are professional phagocytes, less is known about the status of this phenotype in epilepsy. Recent evidence supports… Click to show full abstract

Abstract Microglia‐mediated neuroinflammation is widely associated with seizures and epilepsy. Although microglial cells are professional phagocytes, less is known about the status of this phenotype in epilepsy. Recent evidence supports that phagocytosis‐associated molecules from the classical complement (C1q‐C3) play novel roles in microglia‐mediated synaptic pruning. Interestingly, in human and experimental epilepsy, altered mRNA levels of complement molecules were reported. Therefore, to identify a potential role for complement and microglia in the synaptodendritic pathology of epilepsy, we determined the protein levels of classical complement proteins (C1q‐C3) along with other phagocytosis signaling molecules in human epilepsy. Cortical brain samples surgically resected from patients with refractory epilepsy (RE) and non‐epileptic lesions (NE) were examined. Western blotting was used to determine the levels of phagocytosis signaling proteins such as the complements C1q and C3, MerTK, Trem2, and Pros1 along with cleaved‐caspase 3. In addition, immunostaining was used to determine the distribution of C1q and co‐localization to microglia and dendrites. We found that the RE samples had significantly increased protein levels of C1q (p = 0.034) along with those of its downstream activation product iC3b (p = 0.027), and decreased levels of Trem2 (p = 0.045) and Pros1 (p = 0.005) when compared to the NE group. Protein levels of cleaved‐caspase 3 were not different between the groups (p = 0.695). In parallel, we found C1q localization to microglia and dendrites in both NE and RE samples, and also observed substantial microglia‐dendritic interactions in the RE tissue. These data suggest that aberrant phagocytic signaling occurs in human refractory epilepsy. It is likely that alteration of phagocytic pathways may contribute to unwanted elimination of cells/synapses and/or impaired clearance of dead cells. Future studies will investigate whether altered complement signaling contributes to the hyperexcitability that result in epilepsy. HighlightsLevels of complements C1q and iC3b are increased in focal cortical dysplasia.Decreased levels of Trem2 and Pros1 are evident in focal cortical dysplasia.Microglia make multiple physical contacts with dendrites in the human epileptic tissue.Altered phagocytosis‐signaling may drive microglia‐dendritic contacts in epilepsy.

Keywords: epilepsy; classical complement; complement; phagocytosis signaling; signaling molecules

Journal Title: Experimental Neurology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.