LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Isothermal analysis of nanofluid flow inside HyperVapotrons using particle image velocimetry

Photo from wikipedia

Abstract Nanofluids are advanced two-phase coolants that exhibit heat transfer augmentation phenomena. Extensive research has been performed since the year 2000 onwards to understand the physical mechanisms of heat transfer… Click to show full abstract

Abstract Nanofluids are advanced two-phase coolants that exhibit heat transfer augmentation phenomena. Extensive research has been performed since the year 2000 onwards to understand the physical mechanisms of heat transfer in nanofluids when employed inside traditional heat exchanging geometries. The focus of this paper is to understand if and how the geometry of heat exchangers might be potentially affecting the nanofluid coolant flow boundary conditions established and how this might be hence further affecting their thermal characteristics. HyperVapotrons are highly robust and efficient heat exchangers able to transfer high heat fluxes of the order of 10–20 MW/m 2 . They employ a complex two-phase heat transfer mechanism which is strongly linked to the hydrodynamic structures present in the coolant flow inside the devices. A cold isothermal nanofluid flow is established inside two HyperVapotron model replicas. A high spatial resolution (30 μm) visualisation of the nanofluid flow fields inside each replica is measured and compared to those present during the use of a traditional coolant (water). Significant geometry specific changes are evident with the use of dilute nanofluids which is something unexpected and novel. Evidence of a shear thinning mechanism is found inside the momentum boundary layer of the nanofluid flows that might prove beneficial to the coolant pumping power losses when using nanofluids instead of water and is expected to affect their thermal performance from a hydrodynamic point of view.

Keywords: heat; nanofluid flow; geometry; flow inside

Journal Title: Experimental Thermal and Fluid Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.