Abstract The effect of drag reducing riblets on the flow structure was examined experimentally for a turbulent boundary layer at Reθ = 9890 and riblet spacing s+ = 13.4. Trapezoidal riblets were… Click to show full abstract
Abstract The effect of drag reducing riblets on the flow structure was examined experimentally for a turbulent boundary layer at Reθ = 9890 and riblet spacing s+ = 13.4. Trapezoidal riblets were used, which were attached to the water tunnel wall as a coating. Force measurements were performed to quantify the amount of drag reduction. Then, the mechanism underlying this reduction was investigated by stereo-PIV measurements in the cross-stream plane. To determine the effect of the drag reducing riblets, the results were compared with the smooth flat plate. Time-averaged turbulent statistics such as turbulent kinetic energy and Reynolds shear stress were found to be lower over the riblets compared to the flat surface. Two-point correlations of the fluctuating velocity components were calculated to elucidate the average flow structure size and strength, where riblets significantly suppressed the turbulent structures. Quadrant analysis of the Reynolds shear stress was performed to assess the change in ejection and sweep events and the results were found to be in correspondence with previous works.
               
Click one of the above tabs to view related content.