LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A continuous-stress tetrahedron for finite strain problems

Abstract A finite-strain tetrahedron with continuous stresses is proposed and analyzed. The complete stress tensor is now a nodal tensor degree-of-freedom, in addition to displacement. Specifically, stress conjugate to the… Click to show full abstract

Abstract A finite-strain tetrahedron with continuous stresses is proposed and analyzed. The complete stress tensor is now a nodal tensor degree-of-freedom, in addition to displacement. Specifically, stress conjugate to the relative Green-Lagrange strain is used within the framework of the Hellinger-Reissner variational principle. This is an extension of the Dunham and Pister element to arbitrary constitutive laws and finite strain. To avoid the excessive continuity shortcoming, outer faces can have null stress vectors. The resulting formulation is related to the nonlocal approaches popularized as smoothed finite element formulations. In contrast with smoothed formulations, the interpolation and integration domain is retained. Sparsity is also identical to the classical mixed formulations. When compared with variational multiscale methods, there are no parameters. Very high accuracy is obtained for four-node tetrahedra with incompressibility and bending benchmarks being successfully solved. Although the ad-hoc factor is removed and performance is highly competitive, computational cost is high, as each tetrahedron has 36 degrees-of-freedom. Besides the inf-sup test, four benchmark examples are adopted, with exceptional results in bending and compression with finite strains.

Keywords: finite strain; continuous stress; strain; tetrahedron

Journal Title: Finite Elements in Analysis and Design
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.