LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bond strength of steel bars embedded in high-performance fiber-reinforced cementitious composite before and after exposure to elevated temperatures

Photo by martindorsch from unsplash

Interfacial bond strengths of steel reinforcing bars embedded in a high-performance fiber-reinforced cementitious composite (HPFRCC) are investigated in this paper. Out of 303 pullout specimens, 48 HPFRCC and 3 normal… Click to show full abstract

Interfacial bond strengths of steel reinforcing bars embedded in a high-performance fiber-reinforced cementitious composite (HPFRCC) are investigated in this paper. Out of 303 pullout specimens, 48 HPFRCC and 3 normal concrete specimens were tested without any heat treatment, and 240 HPFRCC and 12 normal concrete specimens were heated at 200, 400, 600, or 800 °C in a furnace for 2 h prior to testing. The effects of bar shape, diameter, and length embedded in HPFRCC on the bond strength of HPFRCC specimens were investigated. The bond strength decreased with the heating temperature and with the size and embedded length of steel bars. It was reduced further when the heated specimens were cooled in water instead of air. It was disaggregated into chemical adhesion and mechanical interlock from a comparative study of plain and deformed bars. The mechanical properties and microstructures of HPFRCC specimens before and after heat treatment were compared to understand the mechanisms of interfacial bonding degradation due to heat treatment.

Keywords: bond; embedded high; bars embedded; steel; bond strength

Journal Title: Fire Safety Journal
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.