Abstract Under the technical requirements of expanding measurement range and suppressing cavitation of flow sensors, the performance of a novel cavitation-resistance turbine flow sensor is taken as the research objective… Click to show full abstract
Abstract Under the technical requirements of expanding measurement range and suppressing cavitation of flow sensors, the performance of a novel cavitation-resistance turbine flow sensor is taken as the research objective in this article. Based on theoretical analysis, a three-dimensional flow field CFD model of the turbine flow sensor with Realizable k-e turbulence model and Schnerr&Sauer cavitation model is established. The cavitation tunnel experiment is performed to obtain the sensor characteristics. Finally, simulation and experiment results is analyzed and the feasibility of the CFD simulation of the sensor flow field is proved. The results show that this novel turbine flow sensor has the ability to resist cavitation, and the critical cavitation number σcr of the turbine flow sensor is below 0.4. Under a wide range of cavitation number (0.33~ σ ~1.6), Reynolds number(5 × 104~ Re ~8 × 105)and inflow angle α(−5°~ α~ 5°), the measurement meets the requirements.
               
Click one of the above tabs to view related content.