LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improving the encapsulation efficiency and sustained release behaviour of chitosan/β-lactoglobulin double-coated microparticles by palmitic acid grafting.

Photo by pchung_hcmc from unsplash

Chitosan (CS) was grafted with 0.1 and 0.5% (w/v) palmitic acid (PA) to improve its encapsulation efficiency (EE) and sustained release characteristics when forming CS microparticles. Thereafter, PA-grafted CS (PA-CS)… Click to show full abstract

Chitosan (CS) was grafted with 0.1 and 0.5% (w/v) palmitic acid (PA) to improve its encapsulation efficiency (EE) and sustained release characteristics when forming CS microparticles. Thereafter, PA-grafted CS (PA-CS) microparticles were coated with denatured β-lactoglobulin (βlg), which forms an outer protective layer. The possibility of hydrophobic interaction with the hydrophobic substances in the CS microparticles increased as the proportion of the grafted PA increased. EE was measured as 64.79, 83.72, and 85.00% for the non-grafted, 0.1, and 0.5% PA-CS microparticles, respectively. In simulated small intestinal conditions, 4.66 and 17.55% of the core material release in the PA-CS microparticles were sustained after 180min by 0.1, and 0.5% PA grafting, respectively. PA grafting enables the sustained release in simulated gastrointestinal fluids by enhancing the hydrophobic interaction between CS and the hydrophobic core material.

Keywords: sustained release; encapsulation efficiency; efficiency sustained; palmitic acid

Journal Title: Food chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.