LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In vitro oral bioaccessibility and total content of Cu, Fe, Mn and Zn from transgenic (through cp4 EPSPS gene) and nontransgenic precursor/successor soybean seeds.

Photo by jupp from unsplash

In this paper, Cu, Fe, Mn and Zn contents in transgenic (T - MSOY7122RR) and non-transgenic (NT - MSOY8200) soybean seeds, sown at summer and winter cultivation periods are investigated… Click to show full abstract

In this paper, Cu, Fe, Mn and Zn contents in transgenic (T - MSOY7122RR) and non-transgenic (NT - MSOY8200) soybean seeds, sown at summer and winter cultivation periods are investigated using four microwave decomposition methods. Student's t tests demonstrate significant differences (p=0.05; n=4), for Cu, Mn and Zn (namely, 8, 9 and 26% higher concentrations in T compared to NT seeds, respectively). Through principal component analysis, precursor and successor soybean seeds are identified. Cu is demonstrated to play an important role in the differentiation of the cultivars, whereas Fe and Zn are of particular relevance in the classification of seeds cultivated in winter against those in summer. Using in vitro extraction based on the Unified Bioaccessibility Method, the bioaccessibility of the above nutrients is proven to differ in both the gastric and gastrointestinal phases on the basis of the transgenesis and the cultivation periods.

Keywords: soybean; soybean seeds; bioaccessibility; successor soybean; precursor successor

Journal Title: Food chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.