LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization and functionalities study of hemicellulose and cellulose components isolated from sorghum bran, bagasse and biomass.

Photo from wikipedia

This study was undertaken to isolate and characterize three carbohydrate-rich fractions: Hemicellulose A (Hemi. A), Hemicellulose B (Hemi. B) and cellulose-rich residue (CRF) from sorghum bran (SBR), sorghum bagasse (SBA)… Click to show full abstract

This study was undertaken to isolate and characterize three carbohydrate-rich fractions: Hemicellulose A (Hemi. A), Hemicellulose B (Hemi. B) and cellulose-rich residue (CRF) from sorghum bran (SBR), sorghum bagasse (SBA) and sorghum biomass (SBI). The monosaccharide composition of the Hemi. A and Hemi. B fractions was determined, indicating that SBR has a highly branched structure. The analysis of insoluble dietary fiber (IDF), soluble dietary fiber (SDF) and total dietary fiber (TDF) showed that TDF and IDF contents in original sorghum materials were in the following order: SBA˃SBI˃SBR. CRF from SBA was rich in IDF. Hemi. B fractions were completely soluble in water and so they were rich in SDF. CRFs from all sorghum sources show high water holding capacity (22.76 to 35.27g water/g CRF). The emulsion stability study showed that the Hemi. B from all sorghum sources had a better emulsion stability than the well-studied corn fiber gum (CFG).

Keywords: biomass; bagasse; fiber; sorghum; sorghum bran

Journal Title: Food chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.