LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of electron beam irradiation on physicochemical properties of corn flour and improvement of the gelatinization inhibition.

Photo by js90 from unsplash

The properties and viscosity-reduction mechanism of corn flour irradiated by electron beam have not been understood properly. Here, we investigate the effects of electron beam irradiation (EBI) on the gelatinization… Click to show full abstract

The properties and viscosity-reduction mechanism of corn flour irradiated by electron beam have not been understood properly. Here, we investigate the effects of electron beam irradiation (EBI) on the gelatinization and physicochemical properties of corn flour irradiated by 0-5.40kGy of electron beam. The total starch and crude fiber contents of corn flour decreased significantly (P<0.05) after EBI treatment, while the moisture and reducing sugar contents increased significantly (P<0.05). EBI caused perforations on the corn flour particle surfaces, and the irradiated parts of the particles would gradually peel off and afford smooth surfaces, spherical structures, and smaller sizes. Molecular chains of corn flour broke owing to EBI. After irradiation, the pasting peak viscosity decreased dramatically (P<0.01) from 1251.74 to 7.16Pa·s, showing that the gelatinization of corn flour was completely inhibited. Thus, EBI can be used to inhibit the gelatinization of corn flour, which may be beneficial for industrial and food formulations.

Keywords: irradiation; corn; gelatinization; corn flour; electron beam

Journal Title: Food chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.