LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Phenolic trapping of lipid oxidation products 4-oxo-2-alkenals.

Photo from archive.org

The reaction between 4-oxo-2-alkenals (fumaraldehyde, 4-oxo-2-hexenal, and 4-oxo-2-nonenal) and phenolic compounds (resorcinol and 2-methylresorcinol) was studied to characterize the trapping ability of phenolic compounds for these lipid oxidation products. The… Click to show full abstract

The reaction between 4-oxo-2-alkenals (fumaraldehyde, 4-oxo-2-hexenal, and 4-oxo-2-nonenal) and phenolic compounds (resorcinol and 2-methylresorcinol) was studied to characterize the trapping ability of phenolic compounds for these lipid oxidation products. The reaction occurred rapidly under neutral or slightly basic conditions and different carbonyl-phenol adducts were produced. However, these compounds were unstable and their stabilization had to be achieved by means of either acetylation or reduction with sodium borohydride. Three different kinds of adducts were isolated and characterized by using mass spectrometry (MS) and 1D and 2D nuclear magnetic resonance spectroscopy (NMR). They were benzofuran-6-ols, 2,3,3a,8a-tetrahydrofuro[2,3-b]benzofuran-2,6-diols, and chromane-2,7-diols. Most of them were produced as mixtures of diasteromers and all of them had a carbonyl group in a free form or as hemiacetal. A reaction pathway that explains the formation of these compounds is proposed. These results provide the basis to understand the removal of 4-oxo-2-alkenals by phenolic compounds in foods.

Keywords: alkenals phenolic; oxo alkenals; lipid oxidation; phenolic compounds; oxidation products

Journal Title: Food chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.