LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Slowly digestible properties of lotus seed starch-glycerine monostearin complexes formed by high pressure homogenization.

Photo from wikipedia

Starch-lipid complexes were prepared using lotus seed starch (LS) and glycerin monostearate (GMS) via a high-pressure homogenization process, and the effect of high pressure homogenization (HPH) on the slow digestion… Click to show full abstract

Starch-lipid complexes were prepared using lotus seed starch (LS) and glycerin monostearate (GMS) via a high-pressure homogenization process, and the effect of high pressure homogenization (HPH) on the slow digestion properties of LS-GMS was investigated. The digestion profiles showed HPH treatment reduced the digestive rate of LS-GMS, and the extent of this change was dependent on homogenized pressure. Scanning electron microscopy displayed HPH treatment change the morphology of LS-GMS, with high pressure producing more compact block-shape structure to resist enzyme digestion. The results of Gel-permeation chromatography and Small-angle X-ray scattering revealed high homogenization pressure impacted molecular weight distribution and semi-crystalline region of complexes, resulting in the formation of new semi-crystalline with repeat unit distance of 16-18 nm and molecular weight distribution of 2.50-2.80 × 105 Da, which displayed strong enzymatic resistance. Differential scanning calorimeter results revealed new semi-crystalline lamellar may originate from type-II complexes that exhibited a high transition temperature.

Keywords: seed; pressure; pressure homogenization; high pressure; starch

Journal Title: Food chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.