LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Authentication of key aroma compounds in apple using stable isotope approach.

Photo from wikipedia

Gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) for the analysis of key volatile compounds sampled using headspace solid phase microextraction (HS-SPME) is an appropriate tool for authenticity assessment of apple aromas.… Click to show full abstract

Gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) for the analysis of key volatile compounds sampled using headspace solid phase microextraction (HS-SPME) is an appropriate tool for authenticity assessment of apple aromas. The current research characterises 18 laboratory produced and 15 commercial apple recovery aroma samples, establishes a database of δ13C values of 16 aroma compounds with respect to their origin (synthetic and natural), and assesses the authenticity of commercially available aroma compounds. Analysis of so-called natural aroma products, revealed δ13C values that were within the expected authentic range although the data did reveal possible falsifications. The sensitivity of the method was evaluated through simple isotope mass balance calculation. Falsification identification is possible for most aromatic substances when the amount of added synthetic compound is in tens of percent.

Keywords: compounds apple; isotope; authentication key; aroma compounds; key aroma; apple

Journal Title: Food chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.